It’s 2015, but for the typical engine builder and racer, much of the same stuff is still going on that I remember happening twenty years ago or even longer. Hydraulic lifters are run on solid cam profiles, solid lifters are run on hydraulic cam profiles, valve lash is set with no regard to the cam profile design, camshaft grinders are still copying lobe profiles, base circle diameters are ground to any size with no regard to the original profile design, roller cam profiles are not designed for the roller wheel diameter used, and on and on. All of the stuff that ticked me off years ago is still going on. It’s sad.
With CNC cam grinding, machining, and head porting being common today, I would think these types of tactics with camshafts would be gone by now. Much of the blame should go to the racing engine rules that have to be dealt with. Hey…NASCAR is finally allowing roller camshafts in the Cup engines this year. WOW! Performance cam profile designs are mostly defined by the engine design and the materials of the day. The end user’s perception, whether right or wrong, also plays a part. I have many cam profile design ideas (as do other cam profile designers) that are just not applicable to today’s racing engines or what the market wants. In the OEM production world, I am glad to see roller camshafts in push rod engines, multiple valve overhead cam engines, turbo and super chargers used, and electronic engine management systems that allow each cylinder to be tuned separately. Production engines are far more technically advanced than the typical racing engine in this country. Racing engines will still have a mechanical valve train long after production engines are computer controlled. Fortunately, that is good for the camshaft industry. Let’s just match the proper cam profiles with the camshaft and the application, as it should be.
0 Comments
|
Archives
December 2024
|